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Abstract—The O-prenyl derivative of a sugar aldehyde derived from DD-glucose undergoes smooth intramolecular domino Knoe-
venagel hetero-Diels–Alder reactions with 1,3-diones to afford a novel class of carbohydrate analogues, cis-fused furopyranopyrans
in good yields with a high degree of chemoselectivity. The stereochemistry of the products was assigned by NMR.
� 2004 Published by Elsevier Ltd.
Coumarin derivatives are widely distributed in Nature
and are reported to have a wide range of biological
activities such as anti-coagulant, insecticidal, anthel-
mintic, hypnotic and anti-fungal activity. Others are
phytoalexins and are inhibitors of HIV protease.1;2

Many naturally occurring compounds such as isoethu-
liacoumarin A, isoethuliacoumarin B, isoethuliacouma-
rin C, ethuliacoumarin A, ethuliacoumarin B and
pterophyllin possess the pyrano[3,2-c]coumarin skeleton
and have been isolated from various sources.3;4 The
domino Knoevenagel intramolecular hetero-Diels–
Alder reaction is one of the most powerful synthetic
routes for the synthesis of various heterocycles and
natural products.5;6 However, there are no examples of
domino Knoevenagel hetero-Diels–Alder reactions
using an O-prenylated sugar aldehyde derived from
DD-glucose.
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In this article, we describe a novel protocol for the
synthesis of sugar fused furo[3,2-b]pyrano[4,3-d]pyrans
via domino Knoevenagel hetero-Diels–Alder reactions
between an O-prenylated sugar aldehyde and 1,3-diones.
Thus, treatment of 4-hydroxycoumarin with an O-pre-
nyl derivative of a sugar aldehyde in the presence of
sodium acetate in acetic acid at 80 �C resulted in the
formation of cis-fused pyrano[3,2-c] coumarin 3a in 82%
yield (Scheme 1).

The reaction proceeds via a tandem Knoevenagel and
hetero-Diels–Alder pathway. This reaction is a highly
stereoselective affording exclusively cis-fused pyrano[3,2-
c]coumarin derivatives. The cis-stereochemistry of the
products was assigned by detailed NMR studies. (1H
NMR studies of product 3a were carried out in CDCl3
solution at 500MHz). The couplings of 3JH6a–H7pro-RÞ ¼
ugar aldehyde; cis-Annelated polycyclic heterocycles.
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11:7Hz, 3JH6a–H7ðpro-SÞ ¼ 4:3Hz, 3JH8a–H12a ¼ 2:3Hz,
3JH6a–H12b ¼ 5:5Hz, and 3JH12a–H12b ¼ 2:3Hz, and a NOE
between H7ðpro-RÞ-H8a amply support a 6aC8a conforma-
tion for the pyran ring (C). The observation of a
long range x-coupling 3JH7ðpro-SÞ–H12b ¼ 1:3Hz further
supports this chair conformation. The small
3JH6a–H12b ¼ 5:5Hz value shows the cis fusion of pyran
ring (C) with pyran ring (D) at C6a–C12b. These conclu-
sions were further supported by the medium intensity
NOE between H7ðpro-SÞ–Me6ðpro-SÞ, H7ðpro-RÞ–Me6ðpro-SÞ,
and H12b–Me6ðpro-RÞ and the weak NOE intensity between
H4–Me6ðpro-RÞ and H4–Me6ðpro-SÞ, which also suggest that
the six-membered pyran ring (D) adopts a twisted form.
The structure was further confirmed by molecular
mechanics calculations.7

Analogous to 4-hydroxycoumarin, 4-hydroxy-1,2-dihy-
dro-2-quinoline gave sugar fused pyrano[3,2-c]quinoline
3b in 73% yield. Furthermore, cyclic 1,3-diketones such
as 1,3-cyclohexadione and dimedone (Scheme 2) and 1,3-
dimethylbarbituric acid also afforded cycloadducts in
fairly good yields (Scheme 2, Table 1, entries c, d, and e).

For example, in cycloadduct 3c, the pyran ring (C) exists
in a chair conformation. This 6aC8a chair conformation
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is supported by NOE’s between the diaxially disposed
protons H7ðPro-RÞ and H8a and coupling constants
3JH6a–H7pro-RÞ ¼ 11:7Hz, 3JH6a–H7ðPro-SÞ ¼ 4:5Hz which
suggest that H7ðPro-RÞ and H7ðPro-SÞ occupy axial and
equatorial positions, and long range ‘x’ coupling
between H7ðPro-SÞ–H12b ¼ 1.1Hz.

Similarly, acetyl acetone and methyl acetoacetate also
reacted smoothly with the sugar aldehyde to give the
corresponding perhydrofuro[3,2-b]pyrano[4,3-d]pyrans
(Scheme 3, Table 1, entries f and g).

We assume that the cycloaddition proceeds in a
concerted manner via an endo-E-syn transition
state. Mechanistically, a 1-oxa-1,3-butadiene may be
formed from 4-hydroxycoumarin and O-prenylated
sugar aldehyde, which can undergo an intramolecular
hetero-Diels–Alder reaction leading to the cis-fused
pyrano[3,2-c]coumarin derivative (Scheme 4).

In the case of unsymmetrical 1,3-dicarbonyl com-
pounds, chemoselective synthesis of pyrano[3,2-c]cou-
marin derivatives was achieved using this procedure
(Table 1, entries a, b, and g). Due to the mild basic
conditions and low reactivity of the ester or amide car-
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Table 1. Domino-Knoevenagel hetero-Diels–Alder reaction

Entry 1,3-Dione Aldehyde Producta Reaction time (h) Yield (%)b
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8.5 72
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3g
6.0 70

aAll products were characterized by 1H NMR, IR, and mass spectroscopy.
b Isolated and unoptimized yields.
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bonyl group compared to a simple carbonyl function-
ality, no other regioisomer was observed. Simple cyclic
ketones such as cyclohexanone, cyclopentanone, and
tetralone failed to give the desired products under the
reaction conditions. Similarly, an O-allylated sugar
aldehyde also did not undergo the hetero-Diels–Alder
reaction with 1,3-diones. This reaction was successful
only with the O-prenylated sugar aldehyde and 1,3-
dicarbonyl compounds.

In conclusion, we disclose a simple and novel protocol
for the synthesis of chiral polyoxygenated heterocycles
via a domino Knoevenagel-hetero-Diels–Alder reaction
between an O-prenylated sugar aldehyde derived from
DD-glucose and 1,3-diones. The reaction is highly stereo-
selective leading to cis-annelated heterocycles in a single-
step operation.8 It is an entirely new synthetic route to
construct optically active cis-annelated tricyclic-, tetra-
cyclic-, and pentacyclic heterocycles.
Acknowledgements

B.V.S., D.N.S., and P.N.L. thank CSIR, New Delhi for
the award of fellowships.
References and notes

1. Feuer, G. In Progress in Medicinal Chemistry; Ellis, G. P.,
West, G. B., Eds.; North-Holland: New York, 1974.

2. (a) Deana, A. A. J. Med. Chem. 1983, 26, 580–585; (b)
Wenkert, E.; Buckwalter, B. L. J. Am. Chem. Soc. 1972,
94, 4367–4369.

3. Barr, S. A.; Neville, C. F.; Grundon, M. F.; Boyd, D. R.;
Malone, J. F. I.; Evans, T. A. J. Chem. Soc., Perkin Trans.
1 1995, 445–452.

4. (a) Ahmad, S. J. Nat. Prod. 1985, 47, 391–392; (b) Mitaku,
S.; Skaltsounis, A. L.; Tillequin, F.; Koch, M.; Pusset, J.;
Chauviere, G. J. Nat. Prod. 1985, 48, 772–773.
5. (a) Tietze, L. F. Chem. Rev. 1996, 96, 115–136; (b) Tietze,
L. F.; Zhou, Y. F. Angew. Chem., Int. Ed. 1999, 38, 2045–
2047.

6. (a) Tietze, L. F.; Kettschau, G.; Gewert, J. A.; Schuffen-
hauer, A. Curr. Org. Chem. 1998, 2, 19–40; (b) Tietze, L.
F.; Ott, C.; Haunert, F. Can. J. Chem. 2001, 79, 1511–
1514; (c) Shanmugasundaram, M.; Manikandan, S.; Rag-
hunathan, R. Tetrahedron 2002, 58, 997–1003.

7. Molecular mechanics calculations were carried out using
the Sybyl 6.8 program on a Silicon Graphics O2 worksta-
tion.

8. General procedure: A mixture of O-prenylated sugar
aldehyde 2 (1.5mmol), 1,3-diketone 1 (1.5mmol), and
sodium acetate (4.5mmol) in acetic acid (10mL) was
stirred at 80 �C for the appropriate time. After complete
conversion, as indicated by TLC, the reaction mixture was
diluted with water (10mL) and extracted with ethyl
acetate (2 · 15mL). The combined organic layers were
washed with a saturated solution of sodium bicarbonate
followed by brine solution and dried over anhydrous
Na2SO4. The resulting product was purified by column
chromatography on silica gel (Merck, 100–200 mesh, ethyl
acetate–hexane, 2:8) to afford the pure cis-annelated poly-
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liquid, ½a�25D �24.6 (c ¼ 1:0, CHCl3),

1H NMR (500MHz,
CDCl3): d 7.72 (dd, JH3–H4 ¼ 8:0, JH2–H4 ¼ 1:6Hz, 1H,
H4), 7.51 (ddd, JH2–H3 ¼ 7:4, JH1–H2 ¼ 8:3, JH2–H4 ¼ 1:6Hz,
1H, H2), 7.29 (dd, JH1–H2 ¼ 8:3, JH1–H3 ¼ 1:1Hz, 1H,
H1), 7.23 (ddd, JH3–H4 ¼ 8:0, JH2–H3 ¼ 7:4, JH1–H3 ¼ 1:1Hz,
1H, H3), 5.84 (d, JH8b–H11a ¼ 3:8Hz, 1H, H11a), 5.45
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JH7ðpro-SÞ–H7ðpro-RÞ ¼ JH6a–H7pro-RÞ ¼ 11:7Hz, 1H, H7ðpro-RÞ),
2.33 (ddd, JH6a–H7ðpro-RÞ ¼ 11:7, JH6a–H7ðpro-SÞ ¼ 4:3,
JH6a–H12b ¼ 5:5Hz, 1H, H6a), 1.56 (s, 3H, Me10ðpro-RÞ),
1.54 (s, 3H, Me6ðpro-SÞ), 1.37 (s, 3H, Me6ðpro-RÞ), 1.31 (s, 3H,
Me10ðpro-SÞ).

13C NMR (75MHz, CDCl3): d 161.5, 160.4,
152.7, 132.0, 123.7, 122.8, 116.4, 115.5, 112.1, 104.3, 97.6,
84.0, 79.2, 76.1, 72.5, 62.9, 35.5, 29.8, 26.8, 26.5, 25.5, 24.8.
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IR (KBr): mmax: 2927, 1709, 1616, 1386, 1215, 1096, 1016,
763 cm�1. FAB Mass: m=z: 401 (Mþ1), 300, 154, 137, 121,
109, 95, 83, 69, 57. 3c: Liquid, ½a�25D �65.5 (c ¼ 1:0, CHCl3),
1H NMR (500MHz, CDCl3): d 5.86 (d, JH8b–H11a ¼ 3:6Hz,
1H, H11a), 4.43 (d, JH8b–H11a ¼ 3:6Hz, 1H, H8b), 5.12 (t,
JH8a–H12a ¼ JH12a–H12b ¼ 2:0Hz, 1H, H12a), 3.66 (d,
JH8a–H12a ¼ 2:0Hz, 1H, H8a), 3.20 (m, 1H, H12b), 3.89
(ddd, JH6a–H7ðPro-RÞ ¼ 11:7, JH6a–H7ðPro-SÞ ¼ 4:5, JH6a–H12b ¼
5:7Hz, 1H, H6a), 3.15 (t, JH7ðPro-RÞ–H7ðPro-SÞ ¼ JH6a–H7ðPro-RÞ ¼
11:7Hz, 1H, H7ðPro-RÞ), 2.15 (ddd, JH7ðPro-RÞ–H7ðPro-SÞ ¼ 11:7,
JH7ðpro-SÞ–H6a ¼ 4:5, JH7ðpro-SÞ–H12b ¼ 1:1Hz, 1H, H7ðPro-SÞ),
1.55 (s, 3H,Me10ðpro-RÞ), 1.33 (s, 3H,Me6ðpro-SÞ), 1.31 (s, 3H,
Me10ðpro-SÞ), 1.19 (s, 3H, Me6ðpro-RÞ), 2.46 (m, 2H, H2), 2.27
(m, 2H, H4), and 1.93 (m, 2H, H3). 13C NMR (75MHz,
CDCl3): d 197.2, 171.8, 111.8, 108.3, 104.3, 83.9, 77.4, 75.9,
73.7, 62.9, 37.4, 35.5, 29.5, 28.7, 26.8, 26.5, 25.5, 24.4, 19.8.
IR (KBr): mmax: 2932, 1735, 1647, 1601, 1380, 1295, 1218,
1145, 1094, 1015, 771 cm�1. FAB Mass: m=z: 351 (Mþ1),
293, 250, 233, 207, 191, 179, 165, 154, 145, 137, 123, 109, 95,
81, 69, 55.
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